
Proprietary + Confidential

Bazel IntelliJ plugin - Public Tech Talk

Bazel syncs
2021-11-18
Alice Kober-Sotzek



Proprietary + Confidential

Context

Summary

Request of 
community

Purpose ● Have a common ground for discussions about speeding up Bazel syncs

● Bazel syncs consist of various different steps/computations.

● Each step represents an opportunity for improvement. Some would have 
larger effects than others.

● The devil is in the details.

Please consider and share:
● Which steps do you notice to be especially slow in your setups?
● Which improvements did you try out in your environment? To which effect?



Proprietary + Confidential

Project view file: .bazelproject file

IntelliJ project definition

directories:
 .
 -aswb
 -clwb
 -cpp

targets:
 //ijwb:ijwb_bazel_dev
 //ijwb:ijwb_lib
 //:ijwb_ce_tests
 //:ijwb_ue_tests

workspace_type : intellij_plugin

build_flags:
 --define=ij_product=intellij-latest

test_sources:
 */tests/unittests*
 */tests/integrationtests*

https://ij.bazel.build/docs/project-views.html


Proprietary + Confidential

Without Bazel sync



Proprietary + Confidential

SyncMode
● Special types

○ STARTUP
○ NO_BUILD

● Types involving a build
○ FULL
○ INCREMENTAL
○ PARTIAL

Bazel sync “code pipeline” (preparation, build, post-processing)
● Executed for all Bazel syncs; some parts simply skipped or executed needlessly
● Hooks to provide additional language-specific handling at various stages

Types of Bazel sync

https://github.com/bazelbuild/intellij/blob/1e29cb16abec6ca9c047c208bb0137d3c9545a8b/base/src/com/google/idea/blaze/base/sync/SyncMode.java


Proprietary + Confidential

● After opening an existing IntelliJ project

● Re-establishes previous in-memory state from disk caches under .cache/JetBrains
○ cache.dat.gz: Outcome of last sync
○ project.view.dat: Read-in project view files

STARTUP Bazel sync

https://github.com/bazelbuild/intellij/blob/deeb55195e4ee993e4584b49bafab6054e1df754/base/src/com/google/idea/blaze/base/sync/data/BlazeProjectDataManagerImpl.java#L138
https://github.com/bazelbuild/intellij/blob/afdb66ce738e0d8e9ddf1fa8afefc0914ded1bbe/base/src/com/google/idea/blaze/base/projectview/ProjectViewManagerImpl.java#L44


Proprietary + Confidential

Update IntelliJ Project Structure
● Project roots (→ directories in .bazelproject).
● One IntelliJ module for all source code.
● Workspace type (java, python, go, …) → IntelliJ module type.
● Add all sub-directories + files below roots.

○ Walk the file system from the roots.
○ Respect excluded directories (prefixed with “-”). → Highlighted with yellow background.
○ Handle and mark test sources separately.

→ Triggers indexing for source code.

NO_BUILD Bazel sync happens before any FULL, INCREMENTAL, PARTIAL Bazel sync.
● Automatically added.
● Ensures correct project structure also on later syncs.

NO_BUILD Bazel sync

https://ij.bazel.build/docs/project-views.html#directories
https://ij.bazel.build/docs/project-views.html#workspace_type
https://github.com/bazelbuild/intellij/blob/c279bd605818d660a37e5a118c5a30761e821fb5/base/src/com/google/idea/blaze/base/sync/projectstructure/ContentEntryEditor.java#L87
https://github.com/bazelbuild/intellij/blob/1e29cb16abec6ca9c047c208bb0137d3c9545a8b/base/src/com/google/idea/blaze/base/sync/SyncMode.java#L24


Proprietary + Confidential

Without Bazel build = After NO_BUILD Bazel sync 



Proprietary + Confidential

Bazel executions (“query”, “info”, “build”, …) executed on

● Local Bazel server (→ “bazel build”) = Local build
○ Advantage: Additional, local caches → Fast incremental builds
○ Much RAM → faster builds; limited RAM → slow builds, potential OOMs
○ Limitation: Just one Bazel execution at one time

● Remote server = Remote build
○ Foundations exist in the plugin → Builds can be redirected to a remote machine if desired
○ Advantage: Several builds possible in parallel (self-defined limitation: 10)

Bazel build - Execution environment

https://github.com/bazelbuild/intellij/blob/ae44cac697c0a4cae2a86f9f649f81acbc6747d1/base/src/com/google/idea/blaze/base/sync/sharding/ShardedTargetList.java#L48


Proprietary + Confidential

Bazel sync - Phases

Preparation

Postprocessing

Build

IDE indexing

Bazel sync



Proprietary + ConfidentialProprietary + Confidential

Preparation - General

● Run Bazel info to learn about directories used by this Bazel server instance
○ Read location of bazel-bin, output_base, bazel-genfiles, …
○ Automatically done for every Bazel sync at the beginning.

● Figure out necessary
○ Aspect (one for all languages)
○ Output groups (different per language)
○ Bazel params (hard-coded e.g. “keep_going” but also from .bazelproject)
○ Targets to build
○ Sharding of targets

https://docs.bazel.build/versions/main/user-manual.html#info
https://docs.bazel.build/versions/main/user-manual.html#flag--keep_going
https://ij.bazel.build/docs/project-views.html#build_flags


Proprietary + ConfidentialProprietary + Confidential

Preparation - Determine targets to build

Defined by settings in .bazelproject
● Derived from directories when derive_targets_from_directories is enabled.
● Explicitly defined targets including wildcard patterns (“/…” notation).
● Last step: Remove excluded targets or wildcard patterns (prefixed with “-”).

Derive targets from directories
● via a Bazel query using a heuristic
● filtered to the active languages (→ workspace_type + additional_languages).
● Goal: Build as little as possible compared to manual, wide target definition.

Wildcard expansion of explicitly defined targets
● Only done for user-requested sharding or automatic sharding + remote build
● Transform to non-recursive wildcard targets (prefetch directories + traverse the file system)
● Expand via Bazel query

https://ij.bazel.build/docs/project-views.html#derive_targets_from_directories
https://ij.bazel.build/docs/project-views.html#targets
https://github.com/bazelbuild/intellij/blob/e82fa3e2419e0f7bd2d251545dd7402be3c49b77/base/src/com/google/idea/blaze/base/dependencies/DirectoryToTargetProvider.java#L33
https://docs.bazel.build/versions/main/query.html
https://github.com/bazelbuild/intellij/blob/e2229390e644cbc90f7fa51f56eb6fe8d22895a6/base/src/com/google/idea/blaze/base/dependencies/BlazeQueryDirectoryToTargetProvider.java#L55
https://github.com/bazelbuild/intellij/blob/3938f3015174e128562abeefdde06ab969aefb40/base/src/com/google/idea/blaze/base/sync/SyncProjectTargetsHelper.java#L134
https://ij.bazel.build/docs/project-views.html#workspace_type
https://ij.bazel.build/docs/project-views.html#additional_languages
https://github.com/bazelbuild/intellij/blob/f6fd157ca4892cdbb96e8855b3139659203c11bf/base/src/com/google/idea/blaze/base/sync/sharding/WildcardTargetExpander.java#L112
https://github.com/bazelbuild/intellij/blob/f6fd157ca4892cdbb96e8855b3139659203c11bf/base/src/com/google/idea/blaze/base/sync/sharding/WildcardTargetExpander.java#L125


Proprietary + ConfidentialProprietary + Confidential

Preparation - Sharding of targets

Types
● User-requested sharding (shard_sync)
● Automatic sharding (currently always enabled; code for no sharding is still around)

Number of targets per shard
● Default: 1.000 (for user-requested sharding), 10.000 (for automatic sharding)
● Can be user-specified (target_shard_size)
● Limited by system restrictions (e.g. max args on system)

Sharders
● Local build with automatic sharding: Simple partitioning of given target list (retains order)
● Remote build or user-requested sharding: BuildBatchingService on expanded wildcard patterns

https://ij.bazel.build/docs/project-views.html#shard_sync
https://ij.bazel.build/docs/project-views.html#target_shard_size
https://github.com/bazelbuild/intellij/blob/5337f84f5f8ef0feb98d9e419bd583c501152399/base/src/com/google/idea/blaze/base/sync/sharding/BlazeBuildTargetSharder.java#L269
https://github.com/bazelbuild/intellij/blob/5337f84f5f8ef0feb98d9e419bd583c501152399/base/src/com/google/idea/blaze/base/sync/sharding/BuildBatchingService.java#L33


Proprietary + ConfidentialProprietary + Confidential

Preparation - Sharders = BuildBatchingService

LexicographicTargetSharder
● Simple partitioning on sorted list of targets
● Supports remote + local builds
● For remote builds

○ Only kicks in for larger IntelliJ projects (>= 1000 targets)
○ Spreads workload on all available workers (→ 10 parallel jobs)
○ Given shard size restricted by safe maximum (1000 targets per shard) to avoid OOMs

Custom Sharder
● Simply implement BuildBatchingService and configure this custom sharder
● Could be a remote sharder

https://github.com/bazelbuild/intellij/blob/5337f84f5f8ef0feb98d9e419bd583c501152399/base/src/com/google/idea/blaze/base/sync/sharding/LexicographicTargetSharder.java#L37


Proprietary + Confidential

Inputs

● List of targets
● Our aspect
● Identified output groups (→ influence what is built)
● Bazel params

Failure handling

● keep_going flag → Continue even upon BUILD/compile errors. Different error code for severe 
Bazel errors (e.g. when OOM).

● Indicate failure to user.
● Surface Bazel warnings/errors in Problems view.
● Use available outputs. → Partially working state for user.

Build - Invocation



Proprietary + Confidential

Loading phase

● Parses, loads, evaluates, and caches BUILD and .bzl files
● Executes macros and builds the target graph

Analysis phase

● Semantic analysis and evaluation of build rules
● Constructs the build dependency graph
● Constructs the action graph → planned schedule of work

Execution phase

● Executes the actions according to the plan
● Re-runs compilation, linting, tools, … as necessary
● Takes the most time of the three phases

Build - Phases

https://docs.bazel.build/versions/main/guide.html#loading-phase
https://docs.bazel.build/versions/main/guide.html#analysis-phase
https://docs.bazel.build/versions/main/guide.html#execution-phase


Proprietary + Confidential

Build - Custom aspect

Aspect

● Creates additional actions.
● Walks the build graph, following hardcoded and hand-picked set of language-specific attributes.
● Can access internal target info.

For each target on its way, it emits:

● “Project structure” file - describes this target (name, type, it’s deps & sources, .jars this target 
contains, how to compile this target, language specifics)

● Collects generated artifacts from this target and all its deps:
○ Java - .jar (hjar or ijar if possible)
○ Others - sources (.h for C++, .go for Golang)

https://github.com/bazelbuild/intellij/blob/5317410734c56b44ac75a4b5bf80e96d39aafade/aspect/intellij_info_impl.bzl#L29-L44


Proprietary + Confidential

Build - Outputs

● Library jars
○ interface jars (ijar/hjar)
○ Most important: direct dependencies
○ Less priority: source jars

● Jars of generated code

● Language settings (e.g. Java version) and compiler arguments (for other languages like C++)

● Custom artifacts (e.g. aar files for Android; inputs for pre-computed IDE artifacts)



Proprietary + ConfidentialProprietary + Confidential

Postprocessing - Retrieval of outputs

● Parse BEP (Build Event Protocol → protobuf messages) output from
○ a file on disk (local build)
○ a special mechanism available for remote builds

● in order to
○ locate build outputs after bazel returns (→ paths to output artifacts)
○ organize artifacts according to targets
○ derive structure of targets. → TargetMap

● Handling of outputs → Post processing
○ Merge with outputs from previous Bazel syncs
○ Prefetch files (e.g. for remote builds)
○ Jar cache enabled: Copy jars to separate area on local disk
○ Remember paths to artifacts
○ “Project structure” artifacts: Cache in own data structures. Includes: TargetMap

https://docs.bazel.build/versions/master/build-event-protocol.html


Proprietary + ConfidentialProprietary + Confidential

Postprocessing - IntelliJ adjustments after Bazel build

Update IntelliJ’s project structure

● Update source roots
● Locate and update project SDK (e.g. JDK). Update language level.
● Adjust IntelliJ module
● Configure libraries

○ Attach jars of libraries and generated code
○ Java: jdeps output → Only attach jars of used dependencies of top-level targets
○ Specify as dependencies

● Configure language-specific parts (e.g. IntelliJ facets)

→ Triggers reindexing.

https://github.com/bazelbuild/intellij/blob/1b7bfce029ae51f2669feedcc03e0382f001f490/base/src/com/google/idea/blaze/base/sync/ProjectUpdateSyncTask.java#L331


Proprietary + ConfidentialProprietary + Confidential

Postprocessing artifact: TargetMap

● Lookup configurations from targets when needed (e.g. locate Go test functions)

● Reverse lookups: SourceToTargetFinder
○ Enables run configurations for tests (source file → test targets)
○ Must be quick
○ Mainly powered by TargetMap

● Beware: SourceToTargetProvider is something else!
○ Purpose: Find targets to add to project for currently uncovered sources.
○ Enabled via: Bazel query

https://github.com/bazelbuild/intellij/blob/678f79b3742fdd81fcbe354520f9dc1a0554d81f/base/src/com/google/idea/blaze/base/run/SourceToTargetFinder.java#L38
https://github.com/bazelbuild/intellij/blob/678f79b3742fdd81fcbe354520f9dc1a0554d81f/base/src/com/google/idea/blaze/base/dependencies/SourceToTargetProvider.java#L27


Proprietary + Confidential

Questions
Comments
Discussion


